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cuits are equivalent in one formalism, will they be equivalent in
the other? What modeling restrictions are needed to bring this
about? This paper shows that, provided circuits contain no zero-
delay loops, a tight relationship, full abstraction, exists between V-.

a natural event-based operational semantics for circuits and a
natural denotational semantics for circuits based on causal functions
on value timelines. The paper also discusses what goes wrong if m
zero-delay loops are allowed, and illustrates the application of
this semantic relationship to modeling questions.
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ABSTRACT. Event-based simulation is a popular technique for predicting the he

havior of, among other things, digital circuits. On the other hand, applicative deno-

tational formalisms, in which circuits are represented by functional equations with an

explicit time variable, are becoming popular for other reasoning tasks. Before a svs-

. tern is to use both approaches to modeling circuits, questions of semantic equivalence

must be addressed. In particular, if two circuits are equivalent in one formalism, will

they be equivalent in the other? What modeling restrictions are needed to bring this

about? This paper shows that, provided circuits contain no zero-delay loops, a tight

relationship, full abstraction, exists between a natural event-based operational se-

' mantics for circuits and a natural denotational semantics for circuits basedt on causal

functions on value timlines. The paper also discusses what goes wrgIlg if zero-delay

loops are allowed, and illustrates the application of this semantic relationship to mu,-

-r' ,eling questions.

An abbreviated version of this paper will appear in the proceedings of the Fifteenth

lASTED Conference on Applied Siniulation and Modeling (ASM-87), Santa Barbara,

CA.
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1 Overview
Event-based simulation is a popular technique for predicting the behavior I
of digital circuits [8,10]. On the other hand, applicative denotational for-

malisms, in which circuits are represented by functional equations with an
explicit time variable, are becoming popular for other reasoning tasks, e.g.
hardware description [9], verification [4,1], and automatic generation of simu-
lator models [5]. Before an integrated CAD system is to use both approaches
to modeling circuits (for different purposes), the different representations
must be shown to contain equivalent information. For example, it would
be unsatisfactorv if a circuit were "verified" using one representation, but
also found to be i,'orrect b, tile simulator, using a different representation
Such a problem could arise from two sources: 1) the verifier or simulator %
could contain bug! or 2) ach is correct, but the underlying represe.tat inOns
are fundamentally inequivalent. The purpose of this paper is to address the
latter issue. -

The approach used here is adapted from the literature on programming
- language theory, along tie lines, for example, of [11]: define a mathematically

precise meaning for the time function representation of a circuit and show
that event-based simulat ion preserves this meaning. This approach has three
steps.

First, a clean abstraction of event-based simulators is defined, giving cir-
cuits a clear operational semantics. It is hoped that the results proved with
regard to this abstraction can be extended as necessary to cover a particular
simulator.

Second, circuits are given denotational meanings by associating with each
a particular matliinatical function, mapping timelines (value histories) to
timelines. lhis captiire .the s.-nantics of applicative formalisms such as the %-

"tim e fi uict ions" of [1].
Third, the two Iinariings. Operational and denotational, are shown to he

equivalent. [hat is. sirnulating the circuit for a given set of input events
calculates the value of applying the function denoted by the circuit to the
corresponding input tiTleline vector. This leads to the stronger result that
the denotational emaii ics is fully abstract with respect to the operational
semantics: that is, two circulits give the same simulation results on all inputs
if and only if tl v en ,,oe the sam e tim eline functio n.

This result ha. several applications. First, it shows that problem. of the
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second type mentioned above can not occur in a system using representa-
tions based on the semantics given here. Second, it is useful in showing
limitations of the the event-based formalism in modeling certain kinds of
behaviors. Third, [5] describes a system which reasons denotationally to
compose and simplify the functions of a circuit's components in order to pro-
duce a behavioral model for the circuit automatically. The equivalence of
the representations is crucial to the soundness of the procedure.

In the discussion to follow, the term "circuit" is used to refer to a math-
ematical idealization of real circuits. It should be noted, however, that this
idealization can be used to model many other real-time systems as well.

Gordon [4] defines a least-fixed-point denotational semantics for clocked,
synchronous circuits. A major difference between that approach and this one
is that this approach is able to model arbitrarily small time delays. Due to
the synchrony of Gordon's model, he is able to define the meaning of a circuit
as (essentially) a sequential (Mealy) machine. The current work is forced to
more generality since input changes can happen arbitrarily close together in
time. Gordon[4] does not address simulation issues.

Amblard, et al [1] give a formalism whose semantics is similar to the
timeline semantics, but they do not attempt to relate it to any operational
model. They give a scenario illustrating how human designers could use the
formalism to verify circuits.

Meinen [9] gives an applicative formalism whose semantics is related to the
present one. He makes reference to the automatic conversion of applicative
descriptions to executable simulations, but does not address the connection
between the two semantics.

2 Time, Values, and Circuits

The usefulness of the event-based simulation semantics presented here rests
on three modelling assumptions: the context independenc assumption re-
quires that primitive components of the circuit have behaviors which are
independent of the circuit in which they are used; the digital approximation
assumes that it is possible consistently to map the o)bservable values into a
discrete set of values; and th( non-zero width eicnt assumption requires that
changes in the discrete value of an observable persist for a positiv duration.

Times and durations are modeled by the set Q+ of positive rationals.

2,
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That is, time starts at zero, but we may only observe the circuit values at
positive rational times. The use of rationals instead of reals is a matter of
convenience which simplifies some of the proofs.

Discrete event simulation maps observables (e.g. voltage) into a non-
empty set S of values ("logic levels").

A circuit consists of a finite set of uniquely named nodes and a firiite -

set of modules connected to the nodes through named ports. The node (an
abstraction of "wire," "bus," "net," etc.) is intended to represent a place
which holds a value during the course of computation. A module represents
a computing element with zero or more input ports and exactly one out put 46.
port. As such it has a type whkh defines the input/output relationship
("function"). The connections associate nodes with ports of modules. No
more than one output port may be connected to any single node. Nodes %
must have some port connected to them. Nodes with no output port
connected will be referred to as circuit inputs, as they must be driven from
the outside at all times. A node is termed an input to a module if some input
port of the module is connected to the node. Similarly, a node is an output ,

of a module if the output port of the module is connected to the node.
Allowed modules are of two basic types. First, fix a convenient subset. F"--

C Uk>0{f f :k - S}. (Zero-ary functions are constants.) The first type
of primitive module is a pair (f,c) E F x Q+. Intuitively, this represents %

the module which puts out f(Y) to its output port at time t + ( whenever
its input ports have values . at time t. f, denotes a primitive module of this
type, where f is a function identifier and c is a duration (delay). The second
primitive type of mnodule is the "perfect memory element." Such a module
type is denoted M(\,(). where C S and c E QE It has two input ports, s
and a. Its output p,,rt is defined to produce at time t + ( the value of a at the
most recent tire u < t such that s E x at time u. For example, M( {1}, 1.0)
is an idealization of a l)-flipflop with 1.0 unit of delay.

3 Operational Semantics

This section defines an event-based operational semantics for circuits. In
particular, an effective evaluator. EVAL, is given which calculates the value
of a given circuit node at a given simulated time in response to a given input
specification.

.- :.-..1*.-.
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A simulation program, p, is a quintuple (Wp, Jp, I,,, yp, tp), where wp, is the
circuit to be simulated; J,, is an initialization mapping which gives initial
(time 0) values for all of the non-input nodes of wp; Ip is a finite collection
of all events which will ever occur on the input nodes of w,, (it must contain
exactly one time 0 event for each input); yp, is the non-input node of w,, whose d
simulated value we wish to measure at simulated time tP.

This semantics is based on the idea of events occurring at given nodes
at given times. An event is a triple (y, t, v), which represents the change of
node y's value to v at time t. The value of a node at any (simulated) time is
simply the value of the most recent event for that node to occur before that
time.

When an event occurs at time t on an input node of a module of type
fwith input nodes Y, a new event is scheduled for the output node at time

t + f with value f (i), where YF refers to the new values of the inputs at time
t. When an event occurs at either of the input nodes of a module of type
M(y, E), then if the Is input's (new) value lies in X at t an event is scheduled
at time t + f to set the output node to the (new) value of the a input at t.

EVAL is defined as follows. A simulation program, p, defines an ab-
stract machine, --+P, which operates on pairs (e, s) of (event-set, store), called
machine-states. Intuitively, e represents the set of those events which are
scheduled to happen on circuit nodes, but which have not yet occurred. s
maps each node to the value of the most recent event to have occurred for that
node. For any machine-state m, define cet(m), the current-event-time of m,
as the minimum time of any event in em. (If e, is emipty, then cet( in) = c.)
Denote by ims(p) (initial machine-state) the pair (eo, so), where so maps each
non-input node, x, into Jp(x) and each input node into the value of the time
o event for that node in Ip. co is Ip augmented with events setting each
non-input node to its JP value at time 0.

Define prop,,,(N, s, t), for N a set of nodes of w, s a store for w7,, and
t E Q+, to be the set of events constructed as follows. For each module
of type f, with input nodes f{xj} and output node y such that for some 1

x, N, form the event (y, t +±( ff(S(XI),. . S(Xk))). For each module of
type M(L, 6) with inputs xr, and x,, and output y such that at least one of
x., x. E N, if -,(x.) E X, then formn the event (y, t + 6, .s(x.)).

Define (e, .s) --. , (e', .s') &a; follows. Let eo be the set of events in e with
time cet(e,s). .s' is s updated with new values for nodes having an event in
e0 . Let ('N be the set of nodes, x, such that s '(x) j4 s(x). e' =(e -eo) U

4
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p,'op,,, (('N, s', cet(t, s))..-.

- is applied iteratively, starting with ims(p), until the first
machine-state, x, is reached with cet(x) _ tp. At that point, evaluation
terminates with EVAL(p) = s.(yp).

Theorem. EVAL is well-defined for all simulation programs.
Proof. One shows by induction on -+ steps that, once all of the (finitely
many) input events are specified, the current-event-time of the intermediate
machine-states strictly increases and is always an integer multiple of 6 > 0.
where 6 is one over the least common denominator of the input event times
and the delays in the circuit. tp must be reached after no more than Ft/61 :7
steps. Note that 6 depends on the input events, so the circuit alone is not
just equivalent to a Mealy machine with clock period 6. o3

4 Denotational Semantics: E"
This section defines a sernantical structure, E, together with a meaning map-

ping. [[.]], which a sociates denotations with circuits. %

A half-tirncline on S is defined to be a map p : Q --- S which is piecewise
constant and obeys the right-hand endpoint convention. That is, for every
point t E Q+, there is a 6 > 0 such that p is constant on [t - 6, t]. We
also assume that for every a > 0, there are a finite number of transition
points of p in the interval (0, a). Denote the set of all half-timelines on S by
H1 (S). (When the choice of S is clear from context, the explicit reference to D
S may be omitted.) It should be clear that, for any k > 0, there is a natural
isomorphism between (I'(S))k, the k-fold cross-product of Il(S) with itself.
and the set Hl(S'). We shall therefore make no distinction between the two.
For any k > 0. let Hk(S) denote the set H'(Sk).

The use of value t imelines (in various slightly different forms) to model D
real-time behavior is ubiquitous in the literature on real-time programs alld
not uncommon in the literature on circuits [2,3,71. Most use a discrete time 4./

domain, rather than the rationals or reals. (Meinen [93 uses the reals, but
also assumes there is a global "minimum cycle time," making the model
equivalent to a discrete time domain.) p

r ,..

Definition. For Yn, n > 0, a function f H'' -- H' is said to be causal if
and only if there exists a positive rational f! such that the following holds.

5 :' 5".
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For p, p' E H' and for all t > 0,

3v E (0, t + Ef1.fp(v) $ fP'(v) 3 ]u E (0, tJ.p(u) # p'(u).

For m, n > 0, let CF ' " denote the set of all causal functions f H' . H".
CF °- n is identified with H ' .

Definition. E =dd (Q+, S, Uk>OH, U>o,>oCFmn).

Let 7ri : S '  S denote the projection onto the ith coordinate. This
induces a (non-causal) function i,: Hk - H' pointwise. Suppose p E
H', p' E Hn. Let [p, p'] denote that element of H +n whose value at any t
has first m components equal to those of p(t) and last n components equal to
those of p'(t). Similarly, if f E CFk- ' n ,g E CF k - n, let [f,g]p -def [fP,gP].
The following facts are immediate.

Lemma.

e If f is causal, then 7rif is causal for any i.

9 If f, g are both causal, then f[g, id] is causal, where id is the identity
function on the appropriate H' to make the argument to f be of the
correct type. Similarly, f[id, g] is causal.

0 If f E CF -,m CF are causal, then [f, g] is causal.

9 Let f E CF,- ' . Then for any k > 0, there exists a unique extension
f E CF+ - n, such that for all p E H m , p' E H ,f[p,p '] = P.

0 1

Definition. Let t E QE Define Hkt, the set of all t-initial half-timelines on
S' , as

{Pt (O,t] S'I 3(pe H).V(O < U < t).p(u) =:d()}

If f E CF ' - ' , then let ft denote the pointwise-induc-ed function f, :H ',t
H"t. That is, ftp(s) =fp(s) for all 0 < s < t "

6
,% - .5
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Lemma. Let f E CF'-'. Then for all t E Q+, f induces a function
it "H' H', by setting

fApt (f P) t+lf

where p is any extension of pt.
Proof. Let p, p' be any extensions of pt, Since f is causal, fp agrees with
fp' for all times less than or equal to t + cf. E]

Theorem (Fixed Point Theorem). Let f E CF'-'. There exists a S
unique p E H ' , denoted jif, such that p = fp.
Proof: The plan is to show that for any t E Q+, there is a unique t-initial
half-timeline, pt, which satisfies Pt = 'pt, and that all such agree on theiraesof overlap. That done, we simply define p to be the unique half-timeline 2
which agrees with all of them. That is, for any t, let p(t) be the common

valhe at t of all the (t + 6)-initial half-timelines, for 6 > 0. This is certainly
unique; that it sati-fies the axioms for being a half-timeline is easily seen to
be inherited from the t-initial ones from which it is constructed.

First, if there exists a unique such t-initial half-timeline for every t, then
they must all agree on their areas of overlap. Suppose pt satisfies the equa- 0
tion, and p' also satisfies, and s < t. But then p, must also satisfy, since
pt satisfies pointwie for all times less than or equal to t. By the unique-
ness property, we see p' = p,. Thus, the original two agree on their area of
overlap.

Now. suppose t < cf Then since f is causal, ft must be a constant S
function. Clearly. (ftv,) f,(fvtu) for any v, and f, t is the unique such :. z:.
solution.

Now, let t = kcf, k > I an integer, and suppose it is the case that for
every u < t there exists a unique p, satisfying the equation at time u. Let
V E (t. t + c]. Define p,. = f-, P,-_f. * Z

Clearly. P, = (fp), ftp,, from the definitions. Is p, the unique solu-
tion? For any solution p,. of the equation, we have

P = fFP' = (fP')tl = fP-fp I

where P, _ must also satisfy the equation at time v-cf. But by the induction
hypothesis, p.. pr_,. Plugging that into the above, we see that p= p,..

7
",0 ,
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Since v was arbitrary in the half-open interval (kef, (k + i)f/], we have
verified the induction hypothesis for all times less than or equal to (k + 1)cf,
and the induction is complete. 0

Before assigning meanings, it is useful to show that causal functions are
closed under finite wiring diagram composition. This is the sort of compo-
sition one finds in a circuit: normal functional composition, together with
fixed point operations as required by feedback loops.

Definition. Given {f, E CF +' - ' 1 < i < m}, let F [f. . fi], the
"vectorization" of the fi. (F is causal by a previous Lemma.) Define ), f,
H' --+ H m , the wiring diagram composition of the {f,}. by (Q,f)(v)
a(FId, ']).

Lemma. Let F E CF,+"-, ; v, v' E Hn such that vt = v, for some t E Q+
Let p = (O,(7rF))v and p' = (O,(r,F))v'. Then p, = p'.
Proof: Pt = (F[Id, v])tp, = F,[p,,v,] = F,[pt, v] = (F[Id, v']),pt. However.
P' is the unique solution to the fixed-point equation for (P'[Id, v']), (see proof
of Fixed Point Theorem). Thus, Pt P't. 0

Theorem (Wiring Diagram Composition). Let f, E CF""-'. for
i =1...m. Then Oi f, E CF'-'.
Proof: Let t E Q+, and suppose v, v' E H ' agree on their t-initial segments.
Let p = (0i f,)v, p' = (Oi f,)v', and F = [fi,... , fi]. Then

+ =(F[p,v]),+, ;p is a fixed point
= Lip, vr ;def of Ft

= F,[p, v], ;previous Lemma and hypothesis
= (F[p',v'])t+,F ;def of F,

;p' is a fixed point

Meanings are assigned in E to initialized circuits. (v, .1), as follows. Sup-
pose w has m non-input nodes and k input nodes. Order the nodes via the
function o : nodes - {1 ... in +k}, letting the non-inputs come before the in-
puts. Each primitive module in (w, J) has a natural interpretation as a causal
function. If it is of type f, and its output node is y. then let c,(,), the causal

........



function for the module driving node y, be given by (c0,(y) p)(t) =(A - 0)O

if t > c, J(y) otherwise. If the module driving node y is of type M(X c),VJ
then (Co(y)[Pa, P3])(0 = pa(u), where u, if it exists, is the most recent time
< t - c such that Ps(u) E X; if u does not exist, then co(,) has value J(y).

Definition. [[(u,. J)]] :H k -- H'm is defined to be CQi ci.
k-m.

Corollary. [[(w, J)I] E CFk . 0

Definition. For a simulation program, p, define%

WNhere [[Ip]] is the ch~vious t imeline vector constructed from the event-s'et I..

5 Connections

Theorem (Computational Adequacy). For any simulation programp p.
[[,j= EVAL(p).

Proof. It suffices to show that there is some pt, such that 7t0O,,)Pt(,(tP)
EVAL(p) and ptp = Ct [ptp, [[ Ip],P], where C = [c,. .cm].

Suppose 2fllS(Pp)px. Define hp(x), the event-history for p at x, in-
ductively as follows. h Vims(p)) =cet- events (e, 5 (p)), where cet-events(c)
is defined to be the set of events of e with time cet(e). If x'--*,x then
hp(x) = hp(x') U cet-events(ex).A%

For any sinmulation program p define the function valp : nodes x (0, tJ-4 S
as follows. Let xr be the machine-state whose cet is minimum, but greater
than or equal to tp, such that i'ms(p)-*+px. Then valp(y, t) is the value part
of the latest event for y in hp(x) whose time is strictly less than t. (It is
easy to see via induction on -* steps that hp(x) is simply a record of all
events which have occurred with times less than or equal to tP.) It follows
from the definition of EVAL that valp(y,tp) = .sz(y) =EVAL(p). Moreover,
valp defines a lt -initial haif-timeline by vectorizing the individual functions

p valp(y. ) in the order o.

Thus, it suffices to show for each non-input node y (with associated mod-
tile M whose inputs are the nodes x,)

9 m
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The only way cy could fail to be satisfied at some time is if an event occured
that changed an input or output node to an incompatible value. But when-
ever an input event occurs, prop,, dictates that an output event be scheduled
at exactly the correct delay to maintain consistency of the constraint. Con-
versely, output events are scheduled only as results of input events; hence,
the output event must maintain consistency with cy. 0

This theorem shows that the value denoted by a simulation program
is always the same as that computed by the event-based simulation. This
allows us to reason about a simulation using the denotations of 'he circuits,
instead of thinking about how the simulator will propagate events. This is
most useful as a means to proving the stronger result (below) that a pair of
initialized circuits (as distinct from their uses in simulation programs) are
behaviorally equivalent if and only if they are denotationally equivalent.

Theorem (Full Abstraction). Suppose that (w, J) and (w', J') have the
same set of inputs. Then

VIVt.EVAL(w, J, I, y, t) = EVAL(w', J', I, y', t)

if and only if
7o(y)[[(w, J)]] 7 ro,(i,,) [[(W', J')]]. ."

Proof. (Only if) The values of causal functions on inputs with infinitely
many value changes must be compatible with their values on inputs having
finitely many value changes. (This is because there exists an eventually
constant completion of any t-initial segment of a half-tirneline. The t-initial
segm(-nt of the value of the causal function is not affected by the difference in
the tail of the input timeline.) The hypothesis and computational adequacy
imply that the two functions are equal on all inputs with only finitely many
value changes.

(If) This direction follows immediately from computational adequacy and
the definition of meaning of simulation programs. C]

Theorem (Modularity). Let c1 ,.... ,C, +,, E CF '++n +' -I, and let s E
CF + - 'k+m be defined by s = Oi= ... k+m c. Denote by w C CF -k+' +n the
function Oi=l... k++,, Ci. Suppose that Ck+m+,, Ck+m+n do not depend on
the first k components of the timeline vector. Then

(7r,+ 103) 0 ... C) (7rk,03) (D 7?C+,+ 1... 7 rCk+ +, [7rk+z U,.. • 7r+,r+,W],

10
.- ,o
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where Os E CF+ ' 1+- k+ is defined by Os(p) = s[r,+p,,..., 7r,+,n+p], and

77ck+,n+i E CF' + -"+ - is defined by ?Ck+m+i(P) ck+,+i[ *. ri,W, +,rm+tp]...
(*denotes some (any) particular timehne.) , .

Proof. This follows immediately from the uniqueness of fixed-points. ?i1
This just says that the function of a subcircuit is preserved in the context

of a larger circuit, and that "internal" nodes of the subcircuit (nodes 1 ... k
above) are important only to the subfunction.

Corollary. Replacement of a subcircuit by a denotationally equivalent im-
plementation has no effect on overall circuit behavior. .

6 Extension: Zero-delay

It is not difficult to extend these results to cover circuits containing primitive
modules with zero delay from input to output, assuming the circuits contain
no zt ro-delay feedback loops. The functions obtained are no longer necessarily
causal functions, of course, but one can still show that if the simulator orders
the processing of events properly, the evaluation will yield the unique, correct
solution to the recursion equations. This larger class of functions, however, 0

is not closed under arbitrary composition, because it is possible to connect
legal zero-delay subcircuits into a zero-delay feedback loop.

The problem with allowing zero-delay loops in circuits is illustrated by
an example: the circuit with two zero-delay inverters connected in a ring,
initialized with its two nodes at opposite logical values. Since zero-delay S
circuits are idealizations of circuits with positive delay (which have non-
trivial behaviors), one presumably wishes the simulator to stop propagating
events once all the node values are consistent, allowing simulation to proceed.

In terms of denotational semantics, however, the fixed-point equation
corresponding to this circuit has infinitely many solutions. (All timelines S
satisfy y(t) = -,--y(t) for all t.) But then the semantics is no longer fully
abstract: the simulator fails to compute all of the possible behaviors of the
circuit.

(Gordon, 1981) defines a denotational semantics for circuits which models
zero-delay loops. Any zero-delay loop denotes I, the symbol for divergence.
This is correct in the case of, for example, a 1-inverter ring, as one would
expect the simulation to fail to halt in that case. Unfortunately, the 2-inverter

11.
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ring also denotes 1, and hence Gordon's (1981) denotational semantics fails
to be computationally adequate for a simulator which converges on the 2-.
inverter circuit.

The lack of full abstraction due to zero-delay loops can cause problems to
systems which use both a simulator representation and a denotational repre-
sentation. Consider a system which manipulates circuit designs by replacing
subcircuits with different implementations to achieve some performance im-
provement. Suppose that it is allowed to replace one subcircuit by another
if the two denote precisely the same set of timeline functions. This would
allow it to replace a two-inverter loop, with nodes a and b initialized to
{(a,0), (b, 1)}, by a two-inverter loop initialized to {(a, 1), (b,0)}. These cir-
cuits have precisely the same set of fixed points, namely H'. On the other
hand, our simulator evaluates these quite differently: the first produces a
constant 1 for all times, the second produces a constant 0. Thus, the system
could make a transformation which failed to preserve operational behavior.

It may be possible to find a denotational semantics for circuits which is ft.

fully abstract for the zero-delay loop simulator, but that is beyond the scope
of this paper. .,". .

7 Applications

The applicative denotational formalisms, for which E provides a precise
mathematical meaning, seem to be well-suited to various forms of reason-
ing about circuits, both by humans and machines [1,4,9]. In particular, they
are highly local and make explicit the relevant time dependencies between
values [5], properties crucial to reasoning about the function of circuits. On
the other hand, event-based simulation is well established as a useful tech-
nique for predicting the behavior of circuits. The results in this paper provide
a formal proof that designers can employ tools which use these different rep-
resentations and still obtain coherent results. This is the chief contribution
of this paper.

Another important contribution, however, is that the denotational se-
mantics can be used to better understand the computational technique of
event-based simulation. For example, it is well-known that modeling certain
low-level circuit devices, like MOS transistors and bi-directional buses, is
difficult and seems to require additional simulator formalism (such as extra
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Figure 1: A pair of buses connected together, hopefully to form a larger bus. "

.. ,

3."

port types in addition to just "input" and "output"). Using the denota-,.'
!

tional semantics, one can prove that certain devices can not be modeled in t,

the event-based formasm given here.

To illustrate the technique, consider a modeling scheme in which node

values have a strength aspect, "driven" or "undriven," in addition to a logical

value. (This is sometimes done to handle stored charge.) "Driven" means ""-

roughly that the node is connected to a power source, while "undriven" means .

".4

the node is merely storing charge. More precisely, suppose there exists a".-

function, p : S - 0, 1 such that ps = 1 if and only ifs stands for a .-

' driven value. Note that S may have more than two elements; even infinitely

m an y."-.
The question is, does their exist some S and some circuit, expressed as

a combination of the given primitives, that models the behavior of a bi-

directional bus? We will show that the answer is no by stating the axioms

we wish the bus to obey and then showing them to be inconsistent with the

structure equation for the circuit shown in Figure 1. We choose the following

bus axioms. 

.- ,

" The bus should have two inputs, a and b, and one output, y. y should be -. ,

driven at time t if input a is driven at time t- or if b is driven at t n-2,s

or both . More precisely, if y .: f(a, b), then pf(a, b) = OR<,, (p, pb). .

w h e re c , 2 > 0 .
. . .

ruWhen two buses are connected together, as shown in Figure 1 the con-s

glomerate should act as one bus, possibly with different delays. That

is, denoting the overall function (as seen at output y in the figure) by

aw e h a v e p f' ( a , b ) = O Rg, ,e ( p a , p b ) . m s

From the structure of the circuit, we can also derive the equationg

where ~,%

Whntobssaecnece 3oehr sson nFgr ,tecn

gl m ra e s ou d ac.s on-u,.o si l it ife et-ea s. T a

is e oi g h v r l f n to as s e.to tp t y i he fg r ) b
" . % . "*%"""". - "' ."""". .""," ,"°,"",""" - ...- "'"". """" - ""°-' ''- -"''°-.-'''"- -. '"",.i'.
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f '(a, b) f/(a, f (b,/f'(a, b))).
It will suffice for this argument to assume that pb(t) =0 for all t. Using

this assumption to substitute and simplify the equations above, it is not
difficult to derive the equation

Zf3(pa) =for,,2f2+((pa, pa),

where z(y)(t) is defined to be y(t - f). But this clearly does not hold for
all choices of a: let a be driven for some interval and then go to undriven L %
thereafter. Thus, the bus axioms are inconsistent with the structure axioms,
and so no such f and f' can exist which model the bus in this way.

8 Summary and Conclusions

This paper has defined an event-based operational semantics for circuits and
a fully abstract denotational semantics, E, based on causal functions on
timelines. The principle results are

* Causal functions on half-timelines satisfy the following.

- For all n > 0, every function in CF"- ' has a unique fixed point.

- Causal functions are closed under arbitrary finite composition (i.e.

arbitrary wiring diagrams).

* EVAL always terminates.

e E is computationally adequate and full) abstract for simulation in that
two initialized circuits behave the same if and only if they denote the
same function.

. A circuit behaves the same way when embedded in a larger circuit as
it does in isolation.

- Extension to Zero-dclay elements: Computational adequacy is lost if
zero-delay loops are allowed, buw a kind of extnsion is possible if .uch
loops are disallowed.

1,4
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The previous section discussed the principle uses of these results: they
give a formal justification for using different representations of circuits in

the same CAD system, and they provide insight into the limitations and
applications of the event-based computational technique. Future research
questions include P

o How can this semantics be extended to capture bi-directional busses,
pass transistors and other low level elements?

* Currently, the formalism allows only primitive functions with fixed de-
lays from inputs to output. This is no loss of generality if S is finite,
but if we allow S to be infinite, can we extend the results to primitives
with variable delay? Can we then extend it to capture the semantics
of real-time computer networks [6,3]? .0
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